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synopsis 

Modulus-composition data obtained on a model threecomponent particulate com- 
posite comprising a finely divided dispersed rubber phase and inorganic glass beads in 
a poly(methy1 methacrylate) (PMMA) matrix cannot be represented appropriately in 
terms of the multicomponent form of the well-known Kerner equation. The data are 
more nearly in accord with a model based on the assumption that the dispersed rubber 
phase and the PMMA matrix, taken together, constitute an effective matrix for the 
glass bead filler. Interparticle interactions are discussed in terms of a maximum pack- 
ing fraction for each filler species; interspecies interactions are found to be minor for 
the system studied. 

INTRODUCTION 

Most theoretical and experimental work on the modulus of particulate- 
filled polymer composites has been restricted to binary systems. This 
work has been reviewed by Nielsen’ and by Hashin.* A number of addi- 
tional pertinent references are listed in D i ~ k i e . ~  Some ~ o r k ~ - ~  has also 
been reported on ternary systems containing a structured particulate filler 
such as a layered sphere or a particle containing multiple inclusions. The 
present paper discusses the properties of a composite material comprising 
two different species of particulate filler in a polymer matrix. 

THEORETICAL 

In previous p a p e r ~ ~ 3 - 8 ~ ~  we have discussed the dependence of dynamic 
Young’s modulus (E*) and elastic Young’s modulus ( E )  on composition 
and morphology. It was reported that an acceptable representation of 
data on a number of two-phase acrylic polyblends could be obtained by 
modifying the well-known Kerner equation for modulus’O to account for 
interparticle interactions. Additional corrections for copolymerization 
effects and partial phase inversion ( to  produce a dispersed phase containing 
subinclusions of matrix material) were introduced for specific systems. 
None of these modifications changes the basic form or functional depen- 
dence of Kener’s equation, however. 
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Kerner’s original treatmentlo was written for an n-component system; 
after some algebra, eq. (8) of ref. 10 can be written in the form 

where ni = Gt/G1 and 01 = 2(4 - 5 ~ 1 ) / ( 7  - 5 ~ 1 ) .  Here, G is shear mod- 
ulus, v is Poisson’s ratio, v is volume fraction, and subscripts 0, 1, and i 
refer to the properties of the composite, the matrix, and filler species i, 
respectively. Summations are carried out over all filler species. 

For a binary composite, the Halpin-Tsai equation11J2 is 

where q = (n, - l)/(nr + l),  subscriptfrefers to the (single) filler species, 
and Equation (2) reduces to the two- 
component form of eq. (1) if p = 1/01. Ashton, Halpin, and P e t W  have 
suggested that, if two or more reinforcements are uniformly mixed in a 
common matrix, one should compute (no),, for reinforcement “a” using 
eq. (2), then incorporate reinforcement “b” into the composite calculation 
through a second application of eq. (2), employing (no),, as the effective 
matrix modulus. There does not appear to be a theoretical basis on which 

is a measure of reinforcement. 
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Fig. 1. Dependence of modulus ratio 7t0 = Ga/G1 on total filler concentration u for 
three-component composite comprising a matrix of unit modulus and two particulate 
fillers of modulus 4 X 10-4 and 20: (a) computed according to eq. (1); (b) and (c) 
computed by successive application of eq. (2), assuming (for B) soft filler in an effective 
matrix of hard filler in unit modulus material and (for c) a hard filler in an effective 
matrix of soft filler in unit modulus material. 
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to choose the order in which this two-stage calculation should be carried 
out, although the expressions obtained foi no by successive application of 
eq. (2) are not symmetric with respect to the order of addition of fillers 
and arc not equivalent to eq. (1) written for a ternary composite. How- 
ever, the numerical difference between the two methods of application 
of eq. (2) are inconsequential if the two fillers have similar moduli, or if 
one or both filler volume fractions are small. 

Significant differences among the three possible treatments for a ternary 
particulate composite do arise when the two filler species have substantially 
different moduli. To illustrate qualitatively these differences, calculations 
have been performed assuming a matrix of unit modulus containing two 
particulate fillere of modulus 4X10-4 and 20 (arbitrary units). These 
values correspond to what might be observed for a two-phase rubber-modi- 
fied polymer system (such as high-impact polystyrene) containing a par- 
ticulate inorganic filler (such as glass beads, clay, or a pigment). 

Figure la represents results obtained for the modulus of this system 
as a function of total filler volume fraction v, by application of eq. (1). 
Figures l b  and lc  present results obtained by successive application of 
eq. (2). Isopleths connecting points of constant filler volume fraction 
have been constructed for each filler species a t  0.1 increments of volume 
fraction. In Figure la,  both sets of volume fraction isopleths are mono- 
tonic functions of concentration and roughly parallel the appropriate v, 
= 0 isopleth. In Figure lb, the soft-filler isopleths are monotonically 
increasing, but the hard-filler isopleths display a pronounced minimum. 
In Figure lc, hard-filler isopleths are monotonically decreasing, whereas 
the soft-filler isopleths display a maximum. Thus, at sufficiently high 
values of total filler volume fraction, there are qualitative as well as quan- 
titative differences among the three methods of computation. 

Packing fraction effects have not been included in these calculations. 
However, barring strong interspecies interactions, the effect of such terms 
should be essentially to  compress the concentration scale for each species. 
Packing fraction effects have previously been accounted for8S9 by replacing 
volume fraction v by an effective volume fraction, veff,  assumed to be a 
function of maximum packing fraction v,. In general, v, will not be the 
same for two different filler species, so it is to be expected that an experi- 
mentally determined modulus-composition diagram will be somewhat 
distorted as well as compressed along the concentration axis. 

EXPERIMENTAL 

Materials 
Polymers used were rubber-modified poly(methy1 methacrylate) 

compositions prepared as described elsewhere.8 These materials (re- 
ferred to as HLPl’s in ref. 8) are based on heterogeneous latex particles 
prepared by emulsion polymerization of methyl methacrylate on a cross- 
linked acrylic rubber seed latex (monomer composition : 95 mole-% butyl 
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acrylate, 5 mole-% 1,3-but8ylene dimethacrylate). The phase structure of 
the heterogeneous particles is sufficiently stable to allow fabrication of 
composites having a uniform spatial distribution of rubbery inclusions by 
compression molding. A comparable poly(methy1 methacrylate) homo- 
polymer (PMMA), prepared by emulsion polymerization, was also used. 

Glass beads (Potter Brothers 325-) were washed in isopropanol; iron 
filings wcre removed magnetically. No at  tempt at fractionation was 
made. Glass beads were incorporated into the finely powdered polymers 
by ball milling; sheets were prepared by compression molding. Volume 
concentration of glass beads was determined by density measurement. 

Modulus Measurement 

Values of tensile modulus were obtained using an Instron Universal 
Testing Machine equipped with an x-y recorder and an Instron 0.541.- 
gauge-length, 10%-maximum-strain, clip-gauge extensometer. Tensile 
specimens were of the usual dog-bone shape (reduced gauge section 0.250 
in. wide, 0.08 in. thick, nominal parallel gauge length 1.0 in.) and were 
pulled at a cross-head speed of 0.04 in./min. Modulus measurements are 
based on the initial slope at  strains less than about 0.3%; stress-strain 
curves displayed substantial nonlinearity at strains greater than about 
0.5%. 

RESULTS AND DISCUSSION 

Four sets of composites varying in glass bead concentration from v = 
0 to  v zz 0.45 were prepared from PMMA and three HLPl compositions; 
the latter contained 0.27, 0.53, and 0.77 volume fraction acrylic rubber. 
The results of modulus determinations on these materials are presented 
in Figure 2 plotted at  constant polymer phase composition versus vc, the 
volume fraction of glass beads. Since the polymer phase composition is 
constant along each of the four curves drawn in the figure, the value of 
vR,  the volume fraction of rubber in the composite v ,  decreases with in- 
creasing vc along each curve: 

VR = (vR)oo=O (1 - VC)  (3) 

In order t o  construct a modulus-composition diagram comparable to 
those presented in Figure 1, vertical sections (at constant values of vc) 
are constructed through the curves of Figure 2. Values of vR are computed 
from eq. (3), a.nd a plot of tensile modulus as a function of vR a t  constant 
values of vc is prepared (Fig. 3). Now, by taking vertical sections through 
the curves of Figure 3, the required modulus-composition diagram (Fig. 4) 
can be prepared and vR and vc isopleths constructed for comparison with 
Figure 1. There is a strong qualitative similarity between Figure 4 and 
Figure l c  (note the maximum in the vR isopleths), implying that eq. (l), 
the multicomponent form of the Kerner equation, is not appropriate for 
representation of these data and that, empirically, the proper treatment 
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Fig. 2. Dependence 
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Derived from Fig. 2 as explained in text. vdues of UC. 

at constant 

is a two-stage calculation employing eq. (2) with the dispersed rubber phase 
and PMMA matrix taken together considered an effective matrix for the 
glass bead filier. 

Quantitatively, the dependence of modulus on concentration is some- 
what more pronounced than predicted. However, this is just what is 
expected from interparticle interactions (maximum packing fraction ef- 
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Fig. 4. Dependence of tensile modulus on total filler concentration. Derived from 
Fig. 3 as explained in text. 

fect). It is by no means clear how the concept of maximum packing frac- 
tion should be introduced for ternary composites in general. A number 
of factors can be expected to  play a role: for each filler species indepen- 
dently, size distribution and filler particle deformability are important; 
the ratio of filler to matrix modulus may also be important (unpublished 
data of the author indicate that maximum packing fraction may pass 
through a shallow maximum as the filler-matrix modulus ratio goes through 
unity). When two filler species are present, additional factors enter, in- 
cluding relative size and stiffness of the two species. 

In the present caae, the filler species differ by about three orders of 
magnitude in diameter and by about four orders of magnitude in modulus. 
Also, the qualitative dependence of modulus on concentration indicates 
that the glass beads effectively “see” a uniform matrix. We therefore 
expect little interspecies interparticle interaction effect. 

In  ref. 8, it was found that the dependence of modulus on concentration 
for rubber-modified materials of the type used in this study could be de- 
scribed in terms of eq. (1) (written for a binary composite), provided that 
the volume fraction of filler vy was replaced by an effective volume frac- 
tion, veff ,  a function of v,, the maximum packing fraction, and, of course, 
also of 8,. The form assumed for veff was one proposed by Nielsen13: 

Uetf = [I + v ~ ( 1  - vwJ/vm21 81. (4) 

A value of 0.8 to 0.83 wa.s assigned to v,. 
for selecting a form such as eq. (4) for v.ft; however, these reasons are 
based primarily on expected modulus (or viscosity) behavior a t  small 

There are cogent 
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volume fractions of filler. For the data presently available on the HLPl’s 
u ~ e d  in this and our previously reported ~ ~ r k , * ~ ~  a nearly equivalent rep- 
resentation is obtained simply by assuming that the effective volume 
fraction v,ff is given by Vf/Um, with v, = 0.85. In Figure 5a are plotted 
values of v,ff (calculated from observed moduli and the two-component 
form of eq. (1) with v,ff substituted for vf) as a function of vR. 

A similar analysis of data has been undertaken on the glass bead-filled 
materials, using the data presented in Figure 2. Calculated values of veff 
are plotted in Figure 5b as a function of vG. These data are reasonably 
well represented by v,ff = vf/vm with u, = 0.65, or somewhat less accurately 
by eq. (4) with v, = 0.6. 

The effect of rubbery filler on vm is apparently minor; the best slopes 
through individual groups of points give values of v, from 0.6 to 0.7. These 
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Fig. 5. Dependence of ueff on u: (a) For rubber in HLPl’s; filled points, data from 
ref. 8; open points, data from this work; solid line, u.ff = vj/0.85 broken line usff 
calculated from eq. (4) with v, = 0.83. (b) For glass heads in PMMA and three 
HLPl compositions; key as for Fig. 2; solid line, v.ff = uf/O.65; broken line, u.ff cal- 
culated from eq. (4) with u, = 0.6. 

differences may be due to differences in matrix modulus or to slight dif- 
ferences in agglomeration of beads. 

Although only minor, if any, interspecies interactions can be inferred 
from the present data, this result is probably specific to composites of the 
same general type, i.e., those containing a relatively large, hard particulate 
filler, and a relatively small, soft dispersed rubber phase in a polymer ma- 
trix. Preliminary measurements on the dynamic mechanical properties 
of composites containing two particulate polymeric fillers of different T, 
indicate that such a system may exhibit stronger interspecies interactions 
than seen in the present work. 
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